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Low Prandtl number heat transfer to 
fluids f lowing past an isothermal 
spherical particle 
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An analytical solution 1~o the forced convective heat and mass transfer across a laminar 
incompressible boundary layer, over the surface of a stationary isothermal spherical particle 
was obtained. An inviscid flow was assumed outside the viscous boundary layer. The 
solution is confined to low Prandtl number fluids. New relations for the forward and rear 
stagnation points, local and overall heat and mass transfer rates for the forward and wake 
regions of the sphere were derived. These compared well with the available experimental 
results and other theories. 
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I n t r o d u c t i o n  

Convective heat and mass transfer from an isothermal spherical 
particle surrounded by a flowing fluid occurs in many 
engineering industries. Among these are: drying, adsorption, 
extraction, fixed and fluidized beds, cooling of airplane 
components, cooling of spherical fuel elements in certain types 
of nuclear reactors. 

The complex nature of the fluid flow around the sphere 
rendered the mathematical treatment of the heat or mass 
transfer rather difficult. For a steady and uniform fluid flow at 
Reynolds number (Re) lgreater than 20, the transfer rate from 
the forward region of the sphere is different and independent 
from that at the rear region (Garner and Grafton, 1954). A 
hydrodynamic boundary layer is formed at the forward surface 
of the sphere. This layer gets separated from the surface, and 
reverse flow is immediately established at the rear of the sphere 
with the development of a rear boundary layer. 

Clift et al. (1978) made an extensive survey of available 
information on the subject. However, Frossling (1938) and 
Linton and Sutherland (1960) solved Navier-Stokes, continuity 
and mass concentration equations by expanding the fluid 
velocity function as a power series in distance along the surface 
from the front pole of tlhe sphere. 

Others such as Levich (1962), Hamielec (1961), Graner and 
Keey (1958) and Akselrud (1953) have used the boundary-layer 
theory to get the following expression for the overall Nusselt 
n um be r: 

Nu = AReW2Sc w3 (1) 

Address reprint requests to Dr. A. A. Kendoush, Chemical Engineer- 
ing Department, University of Technology, P.O. Box 28432, 12631 
Baghdad, Iraq. 

Received 11 November 1994; accepted 23 March 1995 

Int. J. Heat and Fluid Flow 16: 291-297, 1995 
© 1995 by Elsevier Science Inc. 
655 Avenue of the Americas, New York, NY 10010 

for Re > 100, where Sc is the Schmidt number, and the constant 
A has been found to lie between 0.55 and 0.94, which is quite 
a wide range. 

Inadequate methods were reported for calculating the heat 
or mass transfer rates from the wake region of the sphere; e.g., 
the assumption of a constant local mass transfer after the 
separation ring (Askelrud 1953) and negligible skin friction in 
the wake (Garner and Keey 1958). 

The work of this paper is prompted by the consideration of 
a need for a unified theory for the convective heat and mass 
transfer over a submerged isothermal spherical particle, 
particularly in the wake region. The present technique of 
solution is based upon an assumption of the potential flow in 
the energy conservation equation with utilization of boundary- 
layer approximations. The solution is limited to low (not as 
low as the liquid metals domain) Prandtl number (Pr < 1) fluids 
and for laminar flow with Re > O(102). This flow limit was 
indicated by Bejan (1993). 

F o r w a r d  region of  sphere 

Consider a solid stationary isothermal sphere of radius a (see 
Figure 1) in an infinite flowing medium. The uniform velocity 
of the fluid at infinity is represented by U®. The center of the 
sphere is taken as the origin of the spherical system of 
coordinates r, ®. The heat exchange between the sphere and 
the fluid takes place within a thin upstream laminar boundary 
layer over the forward surface of the sphere, whose thickness 
is 61. 

The upstream laminar boundary layer separates from the 
forward sphere surface at Os because of the deceleration of the 
fluid and the consequent increase in its local pressure. The fluid 
flow beyond this layer is assumed inviscid and irrotational, 
which can be represented by the following stream function 
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(Milne-Thomson 1972) 

= ½Uoo[1 - (air)air 2 sin2® (2) 

The inviscid flow assumption was used by Merk (1959), Acrivos 
(1962) and Chen (1974) among others. 

The angular U and radial V velocity components of the main 
flow around the sphere can be obtained from the following: 

(U, V) = - VqJ (3) 

as 

U = U® sin®J1 + 1/2(a/r) a] (4) 

and 

V= - U® cos®[1 - (a/r) a] (5) 

The steady-state energy conservation equation in spherical 
coordinates for an incompressible flow with negligible heat 
generation and no viscous dissipation is as follows: 

V d~ + U = ~ r 2 sinO (6) 
rdO ~ ~rr -4- ~ 

where T is the temperature, and ~ is the thermal diffusivity. 
If we assume that the heat conduction in the angular 

direction is small in comparison with that in the radial 
direction, then we get the following 

V dS + U - - =  ~ r 2 
rdO ~ ~rr (7) 

If the thickness of the upstream laminar boundary layer is 
(fit), then the right side of Equation 7 is further approximated 
as follows: 

d2T 2 dT dEW 
+ _ (8) 

dr 2 r dr dr 2 

because if (2/r)dT/dr is 0(2/a6 O, then 

1 2 1 
- -  + - -  ~_ ( 9 )  

Now we transfer the origin of the r, O coordinates from the 
center of the sphere to its surface with the introduction of a 
new radial variable y, so that y = O  at r = a ,  and 
- O s <  0 < 0~. 

Assuming 

(r - a)/a = y/a << 1 (10) 

allows us to say that 

U dT U dT 

r d O -  a dO (11) 

Utilizing the binomial theorem and retaining the first two terms 
with Equation 10 in mind, we get the following: 

(a/r) 3 = (1 - y/r) 3 = 1 - 3y/r - . . .  (12) 

therefore, Equations 4 and 5 become as follows: 

U ~- 3/2Uo~ sin® (13) 

and 

V ~- - 3U®(y/a) cos® (14) 

Substituting Equations 8, 10, 11, 13, and 14 into Equation 
7, we get the following: 

dT dT dZT 
sin® - -  - 2y cos® - -  = 2 - -  (15) 

dO dy @2 

where 

2 = 2a~/3U~ (16) 

The boundary conditions are as follows: 

T = 0  at y = o o  and r t > O > 0  (17) 

T = T .  at y = 0  and O ~ > O > 0  (18) 

T = 0  at ~ > y > 0  and O s > O > 0  (19) 

The independent variables y and O of Equation 15 are 

Notation 

A 
Ay 
Aw 
a 

D 
h 
ha 
J 
k 
Nu 
N*u 
[ N u ( O ) ] :  

[Nu(O)]w 

[Nu(O)]: 

[ N u ( n ) ]  w 

Pe 

(vow 
Pr 

constant, Equation 1 
surface area of the forward region of the sphere 
surface area of the wake region of the sphere 
sphere radius 
diffusion coefficient 
average heat transfer coefficient 
local heat transfer coefficient 
Colburn J-factor 
thermal conductivity of fluid 
overall Nusselt number, h (2a)/k 
Nusselt number based on radius, ha/k 
local Nusselt number at the forward region of 
the sphere, h o (2a)/k 
local Nusselt number at the wake region of the 
sphere, h® (2a)/k 
local Nusselt number at the forward stagnation 
point of the sphere 
local Nusselt number at the rear stagnation 
point of the sphere 
Peclet number, Uoo(2a)/ot 
Peclet number at the wake, Uw (2a)/~t 
Prandtl number, v/ct 

q 
(qo): 

r 

Re 
Re" 
Sc 
T 
U 
U~ 
U~ 

V 

Y 

Greek 
Gt 

0 
Os 
tp 

tP w 
o9,0 
V 

2 

overall rate of heat transfer 
rate of heat transfer from the forward surface of 
the sphere 
polar coordinate 
Reynolds number, U~o(2a)/v 
Reynolds number based on radius, U®a/v 
Schmidt number, v/D 
absolute temperature 
angular component of fluid velocity 
uniform velocity of the flow at infinity 
reverse velocity of the wake at the edge of the 
boundary layer 
radial component of fluid velocity 
radial distance from sphere surface 

thermal diffusivity 
polar coordinate 
separation angle 
stream function at the forward region of the sphere 
stream function at the wake region of the sphere 
functions defined by Equations 20 and 21 
kinematic viscosity 
constant, Equation 16 
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transformed into the following: 

to = y s in20 (20) 

4, = ~cosaO - cosO + 2/3 (21) 

so that  Equat ion 15 becomes the following: 

t~T t~2T 
- -  = 2 - -  ( 2 2 )  
~4, ~to2 

which is a parabolic  part ial  differential equation analogous to 
the diffusion equation. The new boundary  condit ions are as 
follows: 

T = O at to = oo and 4' >- 0 (23) 

T = T= at to = 0 and 4, >_ 0 (24) 

The solution of Equat ion 22 is (Carslaw and Jaeger 1959) 

T = Ta erfc [to/2(24,) l/z] (25) 

Substituting the values of to and 4, into the above equation 
gives the temperature distr ibution over the forward region of 
the sphere, as follows: 

T = T= effc {y sin20/2[~.(1/3 cos30 - cosE) + 2/3)] 1/2} (26) 

The local convective rate of heat transfer per unit area of the 
forward surface of the sphere is given by the following: 

(qe).r = - k ( d T / ~ 3 y ) y  = o = k T,, sin2E)/(lt).4,) 1/2 (27) 

where k is the thermal conductivity of the fluid, but  

(qo)y  = ho  T= (28) 

where h e is the convective heat transfer coefficient. Therefore, 
the local Nusselt number  [Nu = h e ( 2 a ) / k  ] for the forward 
region of the sphere is given by the following: 

[Nu(O)] s = 1.693 gl(O)pel/2 (29) 
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where 

#x((9) = sin2(9/(2 + cos3(9 _ 3 cos(9) ~/2 (30) 

and 

Pe = 2aUoo/ot = Peclet number (31) 

Also Pe = (Re) (Pr) where Re is the Reynolds number of the 
flow, and Pr is the Prandtl number (Pr = v/ct) where v is the 
kinematic viscosity. 

At the forward stagnation point of the sphere (i.e., at (9 = 0), 
we get 

[Nu(0)]: = 1.955 Pe 1/2 (32) 

Noting that 

lim gl((9)= 1.155 (33) 
10~0 

W a k e  r e g i o n  o f  t h e  s p h e r e  

Consider the reverse flow around the rear surface of the sphere 
to be similar in pattern and streamlines to that around the 
forward surface of the sphere, particularly in the vicinity of the 
surface. This assumption is not far from reality if we examine 
the photographs of the streamlines for the flow past a sphere 
taken by Taneda (1956) and shown in Batchetor (1967, Plate 3). 

The same method of solution used in the previous section is 
employed here by starting from the rear stagnation point and 
working forward to the separation ring. The above assumptions 
mean that (9 = O will be at the rear stagnation point, and the 
origin of the r, (9 coordinate is still at the center of the sphere. 

Batchelor (1967, p. 348) and Lee and Barrow (1965) indicated 
that boundary-layer approximations are applicable in the wake 
region of spherical particles. The stream function that 
represents the flow of the wake above the edge of the 
downstream laminar boundary layer (see Figure 1) is as follows: 

~ = (1/2)U~[1 - (a/r)~]r 2 sin2(9 (34) 

where U~ represents the reverse velocity of the wake at the 
edge of the downstream boundary layer. 

Lee and Barrow (1965) found experimentally that the ratio 
of UJUo~ =0.077 for the Reynolds number range of 
10 < Re < 1000. Accordingly, the local Nusselt number for the 
wake region of the sphere will be the following: 

[Nu((9)]w = 1.693 gl((gXPel/2)w (35) 

where 

(Pe)w = 2aU,,/ct = 0.077 Pe (36) 

The transformation to the original r, ® coordinates requires 
the replacement of every angle (9 in 01 ((9) by (n - (9), so that 
we get the following: 

02((9) = sin2(9/(2 - cos3® + 3 COS(9) 1/2 (37) 

Therefore, the final form of Equation 35 becomes the following: 

[Nu((9)]w = 0.4698 g2((9)Pe 1/2 (38) 

with the 

lim g2((9)= 1.155 
O ~ t  

Therefore, the rear stagnation point heat transfer is 

[Nu(Ir)] w = 0.543 Pe 1/2 (39) 

Clift et al. (1978, p. 121) indicated that Nu((9) = f(Re 1/2) for 
laminar boundary layers; whereas, Nu( (9)=f (Re  °'a) for 

turbulent boundary layers. This is consistent with the results 
above. 

O v e r a l l  N u s s e l t  n u m b e r  

To derive the Nusselt number averaged over the entire surface 
of the sphere, we say 

1[;: 1 q = 4na~ (qo): dA: + (qo)w dAw (40) 

where 

:? 4~a 2 = dA: + dAw 

A: and Aw are the surface areas of the forward and wake 
regions of the sphere, respectively. The above gives the overall 
Nusselt number as 

Nu = Pe~/2[0.564 HI(®~) + 0.156 H2(Os) ] (41) 

where 

Hl(®s) = (2 + cos3®~ - 3 cos®s) 1/2 (42) 

and 

H2(®s) = (2 - cos3®, + 3 cosO~) ~/2 (43) 

As ®2--* rc in Equation 41, we get the Boussinesq (1905) 
solution for the heat transfer to the single sphere; namely, 

Nu = 1.13 Pe 1/2 (44) 

The proportionality to the separation angle O~ in Equation 41 
does not seem to have been previously suggested as a general 
law for the calculation of the convective rate of heat or mass 
transfer over the surface of a spherical particle. However, the 
separation angle can be obtained from the correlations of 
Linton and Sutherland (1960), as follows: 

®s = 83 + 660 Re- 1/2 for Re > 100 (45) 

and 

®s = 83 + 191 Re -1/3 for 15 < Re < 1000 (46) 

The ratio of the heat transferred from the forward flow region 
of the spherical particle to that from the wake region may be 
written as follows: 

Ratio = 3.615 n l(Os)/n2(®~) (47) 

This ratio is plotted in Figure 2, where the effect of the wake 

O 
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11 
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Ratio of heat transfer from forward to wake 
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Comparison of local distributions of Nusselt number from several sources 

is clearly demonstrated. At the lower end of the range, at 
Re = 200, and @s = 130 °, the wake contributes about 8% of 
the total transfer; whereas, at Re = 4000, and ®~ = 93 °, the 
wake contributes about 20% of the total. 

Mass transfer 

The corresponding problem in mass transfer can be stated in 
an analogous method to the previously discussed heat transfer, 
particularly when viscous heating is ignored in the latter. We 
need only to replace temperature by concentration, the thermal 
boundary layer by concentration boundary layer, the Nusselt 
number by Sherwood number, and the Prandtl number by 
Schmidt number. 

Verification of the theory 

The present theory has been tested by comparing it with other 
theories and the available experimental results. Figures 3 and 
4 show fair agreement for the local rates of heat transfer from 
a single solid sphere (i.e., Equations 29, 32, and 38) with the 
measured values of Newman et al. (1972), Venezian et al. (1962), 
Aufdermauer and Joss (1967), Lautman and Droege (1950), 
Xenakis et al. (1953), arid Wadsworth (1958). 

In Figure 3, note that (Nu/Re~/2)o means that the quantity 
was evaluated at the forward stagnation point, therefore 

[Nu(®)lReilZ]/(Nu/Re~2)o = 0.875 gl(@) (48) 

for the forward stagnatiion region of the sphere and 

[Nu(O)lRell2]/(Nu/Relt2~o = 0.243 02(0) (49) 

for the wake region of the sphere. 
The variation of the function [Nu(O)s,w/Pe 1/2] of Equations 

29 and 38 around the separation angle ®, was not specified in 

1.5 
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Z 
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Comparison of local heat transfer from several sources 

the present study (see Figure 4). A smoothing function is 
required to join the two different values of P1 and P2 at ®s. 
The analytical solution of the energy equation at ®s is rather 
complex to obtain the smoothing function caused by the 
nonexistence of the boundary layer there. An average value 
between points P1 and P2 would be sufficient for the 
completion of this presentation. 

Figure 5 represents a comparison between the present work 
and the theories of Sibulkin (1952) and Short (1960) and the 
experimental results of the authors indicated. Note that the 
dimensionless numbers in Figure 5 were based on the radius 
of the sphere, so Equation 32 becomes as follows: 

[Nu*(O)]y = 1.38 (Re' Pr) 1/2 (50) 

The equation above is identical to that derived by Short (1960). 
Figures 6 and 7 show a fair agreement between the 

experimental and theoretical results of various investigators 
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for the overall Nusselt number for the flow of fluid past a 
spherical particle and the present theory (i.e., Equation 41). The 
ordinate of Figure 6 represents the Colburn J-factor defined as 
J = (St) (Sc) 2/3, where St = Sh/Re Sc = Stanton number, so our 
Equation 41 for Sc = 0.61 becomes 

J = 0.921 Re-t/2[0.564 HI(O~) + 0.156 H2(O~)] (51) 

The potential flow assumption outside the viscous boundary 
layer makes the present solution suitable for large Reynolds 
number flows of small viscosity, therefore, the present solution 
was found to give fair agreement with the experimental results 
of fluids with low Prandt] numbers (e.g., gases and light liquids). 

C o n c l u s i o n s  

The new theory developed in this paper for the convective heat 
and mass transfer over tlae surface of the spherical particle has 
been successful in calculating the local heat and mass transfer, 
the transfer coefficients at the forward and rear stagnation 
points, and the overall transfer rates. The present analytical 
results compared well ~i th  the available experimental results 
and other theories. 
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